binomial

Publish date: 2024-06-28

binomial - Polynomial which is the sum of two monomialsA binomial probability experient is conducted with the given parameters. Compute the probability of

A binomial probability experient is conducted with the given parameters. Compute the probability of x successes in the n independent trials of the experiment. n = 40, p = 0.05, x = 2 P(2) = Answer is [B]0.2777[/B]. Using Excel formula of =BINOMDIST(2,40,0.05,FALSE) or using our [URL='http://www.mathcelebrity.combinomial.php?n=+40&p=0.05&k=2&t=+5&pl=P%28X+%3D+k%29']binomial probability calculator[/URL]

Algebra Master (Polynomials)Free Algebra Master (Polynomials) Calculator - Given 2 polynomials this does the following:
1) Polynomial Addition
2) Polynomial Subtraction

Also generates binomial theorem expansions and polynomial expansions with or without an outside constant multiplier.

Binomial Distribution

Free Binomial Distribution Calculator - Calculates the probability of 3 separate events that follow a binomial distribution. It calculates the probability of exactly k successes, no more than k successes, and greater than k successes as well as the mean, variance, standard deviation, skewness and kurtosis.
Also calculates the normal approximation to the binomial distribution with and without the continuity correction factor
Calculates moment number t using the moment generating function

Binomial Multiplication (FOIL)

Free Binomial Multiplication (FOIL) Calculator - Multiplies out the product of 2 binomials in the form (a + b)(c + d) with 1 unknown variable.
This utilizes the First-Outside-Inside-Last (F.O.I.L.) method.

Binomial Option Pricing Model

Free Binomial Option Pricing Model Calculator - This shows all 2t scenarios for a stock option price on a binomial tree using (u) as an uptick percentage and (d) as a downtick percentage

Binominal Probability

You want the binomial distribution, where a "success" is that the plant [U]does not[/U] grow. So if the probability that the plant grows is 0.9, the probability it does not grow is 1 - 0.9 = 0.1. We have n = 12, p = 0.1 You want the probability that exactly 4 of 12 do not grow. Use our [URL='http://www.mathcelebrity.com/binomial.php?n=+12&p=+0.1&k=+4&t=+5&pl=P%28X+%3D+k%29']binomial distribution probability calculato[/URL]r to get P(X = 4) = [B]0.0213[/B]

Difference of Two Squares

Free Difference of Two Squares Calculator - Factors a difference of squares binomial in the form a2 - b2 or multiplies 2 binomials through in the form (ax + by)(ax - by).

Eighty percent of the employees at Rowan University have their biweekly Wages deposit directly to th

Eighty percent of the employees at Rowan University have their biweekly Wages deposit directly to their bank by electronic deposit program. Suppose we select a random samples of 8 employees. What is the probability that three of the eight (8) sampled employees use direct deposit program? Use the [I]binomial distribution[/I] [LIST] [*]p = 0.8 [*]n = 8 [*]k = 3 [/LIST] So we want P(X = 3) Using our [URL='http://www.mathcelebrity.com/binomial.php?n=+8&p=+0.8&k=+3&t=+5&pl=P%28X+=+k%29']binomial distribution calculator[/URL], we get P(X = 3) = [B]0.0092[/B]

Expand Master and Build Polynomial EquationsFree Expand Master and Build Polynomial Equations Calculator - This calculator is the ultimate expansion tool to multiply polynomials. It expands algebraic expressions listed below using all 26 variables (a-z) as well as negative powers to handle polynomial multiplication. Includes multiple variable expressions as well as outside multipliers.
Also produces a polynomial equation from a given set of roots (polynomial zeros). * Binomial Expansions c(a + b)x
* Polynomial Expansions c(d + e + f)x
* FOIL Expansions (a + b)(c + d)
* Multiple Parentheses Multiplications c(a + b)(d + e)(f + g)(h + i)Factoring and Root Finding

Free Factoring and Root Finding Calculator - This calculator factors a binomial including all 26 variables (a-z) using the following factoring principles:
* Difference of Squares
* Sum of Cubes
* Difference of Cubes
* Binomial Expansions
* Quadratics
* Factor by Grouping
* Common Term
This calculator also uses the Rational Root Theorem (Rational Zero Theorem) to determine potential roots
* Factors and simplifies Rational Expressions of one fraction
* Determines the number of potential positive and negative roots using Descarte’s Rule of Signs

Mimi just started her tennis class three weeks ago. On average, she is able to return 20% of her opp

Mimi just started her tennis class three weeks ago. On average, she is able to return 20% of her opponent's serves. Assume her opponent serves 8 times. Show all work. Let X be the number of returns that Mimi gets. As we know, the distribution of X is a binomial probability distribution. a) What is the number of trials (n), probability of successes (p) and probability of failures (q), respectively? b) Find the probability that that she returns at least 1 of the 8 serves from her opponent. (c) How many serves can she expect to return? a) [B]n = 8 p = 0.2[/B] q = 1 - p q = 1 - 0.2 [B]q = 0.8 [/B] b) [B]0.4967[/B] on our [URL='http://www.mathcelebrity.com/binomial.php?n=+8&p=0.2&k=1&t=+5&pl=P%28X+>+k%29']binomial calculator[/URL] c) np = 8(0.2) = 1.6 ~ [B]2[/B] using the link above

Negative Binomial Distribution

Free Negative Binomial Distribution Calculator - Calculates the probability of the kth success on the xth try for a negative binomial distribution also known as the Pascal distribution.? ? It calculates the probability of exactly k successes, no more than k successes, and greater than k successes as well as the mean, variance, and standard deviation.

Success in a binomial event is .15 what is the probability of failure?

Success in a binomial event is .15 what is the probability of failure? Success is represented as p. p = 0.15. The probability of failure q, is written as q = 1 - p q = 1 - 0.15 [B]q = 0.85[/B]

Which of the following is equivalent to 3(2x + 1)(4x + 1)?

Which of the following is equivalent to 3(2x + 1)(4x + 1)? [LIST] [*]A) 45x [*]B) 24x^2 + 3 [*]C) 24x^2 + 18x + 3 [*]D) 18x^2 + 6 [/LIST] First, [URL='https://www.mathcelebrity.com/binomult.php?term1=2x%2B1&term2=4x%2B1&pl=Expand+Product+of+2+Binomials+using+FOIL']multiply the binomials[/URL]: We get 8x^2 + 6x + 1 Now multiply this polynomial by 3: 3(8x^2 + 6x + 1) = [B]24x^2 + 18x + 3, answer C[/B]

your classmate asserted that x^2 - 4x - 12 and 12 - 4x - x^2 has the same factors is your classmate

your classmate asserted that x^2 - 4x - 12 and 12 - 4x - x^2 has the same factors is your classmate correct Factor x^2 - 4x - 12 using binomials: (x + 2)(x - 6) Therefore, factors are x = -2, x = 6 Factor 12 - 4x - x^2 -(x - 6)(x + 2) Therefore, factors are x = -2, x = -6 Because they don't have two matching factors, your classmate is [B]incorrect.[/B]

ncG1vNJzZmivp6x7rq3ToZqepJWXv6rA2GeaqKVfqLKivsKhZamgoHS%2Bfq7Ip6amoZGh